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SIMULATION OF THE FOKKER-PLANCK EQUATION BY RANDOM WALKS 

OF TEST PARTICLES I N  VELOCITY SPACE WITH APPLICATION 

TO MAGNETIC MIRROR SYSTEMS 

by Gerald W. Englert 

Lewis Research Center 

SUMMARY 

The structure of an analytical expression obtained from a random-walk process was  
compared with that of the Fokker-Planck equation. The step sizes and probabilities of 
taking steps in various directions were related to the coefficients of the Fokker-Planck 
equation. Spherical coordinates with azimuthal symmetry about the polar axis were 
used. 

The technique w a s  applied to  a magnetic-mirror system for confining charged par- 
ticles. The cases selected have approximate analytical solution via the Fokker-Planck 
equation. Velocity distributions inside and end losses from this system were determined 
by the random-walk procedure and compared with results of the analytical solutions. 

The effect of reducing the maximum impact parameter cutoff distance wel l  below the 
Debye length w a s  studied. This reduction increased step s izes  and decreased collision 
frequency in such a manner that the probability of a test particle walking to specified 
locations in velocity space remained approximately constant. A sampling of random 
numbers from the lower impact-parameter range greatly reduced computing time and 
yet permitted reliable distributions within 10- to 20-percent accuracy. 

The random-walk results were, in turn, permitted an appraisal of some simplifying 
assumptions made in the analytical solution of the Fokker-Planck equation. An iteration 
procedure w a s  used to find a self-consistent solution of the distribution of test  particles 
walking through an ensemble of field particles, on which the Fokker-Planck coefficients 
were based. Analytical solutions assume that the distribution of test particles and loss 
rates are insensitive to  assumed field-particle distributions. For the cases studied this 
w a s  found to  be a good assumption. Two steps in the iteration process made the 
random-walk solutions self-consistent within the scattering of the data for a sampling 
size of 500 test particles. 
function w a s  also verified. 

problems that cannot be solved analytically. 

The popular assumption of separability of the distribution 

The random-walk method should apply with little additional difficulty to a number of 



INTROD UCTl ON 

The Fokker-Planck equation, in general, describes the t ime development of a 
Markov process. Such a process is characteristic of the nature of classical collisions 
where each event depends on the present conditions and is independent of the past 
(ref. 1, p. 157, and ref. 2, p. 369). Written in velocity space, this equation provides 
a popular approximation to the colIisiona1 t e rms  in the Boltzmann equation (refs. 3 to 5). 
Included in this approximation a r e  first and second moments of velocity increments de- 
scribing two-body encounters (p. 75 of ref. 6) .  These moments enter as coefficients 
of the Fokker-Planck equation and permit it t o  describe changes in the velocity distri- 
bution function resulting from influence of dynamic friction and dispersion (refs. 
7 and 8). In general, the velocity distribution function is used to weight the moments 
of velocity increments, making the Fokker-Planck equation nonlinear and very difficult 
to  solve for many problems of interest. 

Another approach to collision problems is through the study of random walks of 
test particles. This approach replaces the mathematical complexity with a relatively 
simple but repetitious process, which is greatly facilitated by high- speed computers. 
Usually the walks  of a large sample of test particles through an ensemble of field par- 
ticles must be studied to determine how they distribute in velocity space. For a self- 
consistent solution, the resulting test-particle distribution should coincide with the 
field-particle distribution, requiring an iteration process. 

A random walk wil l  be defined herein as a process in which step sizes and proba- 
bilities of taking various steps are average values (depending on field-particle distribu- 
tions and test-particle location in velocity space for the case at hand). In contrast to  
this procedure is the more popular Monte Carlo method. This technique makes random 
selections from distributions of pertinent variables (such as impact parameter and rela- 
tive velocity) at each collision and performs an interaction calculation at each step to 
determine the resulting test-particle location (refs. 9 and 10). 
tion at each step is excellent for physical and mathematical clarity, but would involve 
an excessive amount of computer time for cases  involving a very large number of en- 
counters. On the other hand some physical clarity can be easily lost in the representa- 
tion by random walks, especially in determining the probability of taking steps in vari- 
ous directions. The ability to relate step sizes and probabilities to  the well explored 
coefficients of the Fokker-Planck equation would thus be very useful. 

The random-walk and the Fokker-Planck concepts depend primarily on the same 
combinatory laws of probability; however, the random walk as depicted herein is re-  
stricted to steps on a grid. A detailed generation of the Fokker-Planck equation from a 
random-walk procedure is available in the literature only for the one-dimensional prob- 
lem with constant coefficients. Reference 2 (ch. 14) shows that for this case the proper 
step size of a random walk is dependent on the second moment and that the probabilities 

. 

Such a detailed calcula- 
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of taking steps in positive and negative directions depend on both first and second mo- 
ments. 
variable coefficients. In this more general case the step sizes and probabilities a r e  
again determined in te rms  of Fokker-Planck coefficients. The Fokker-Planck coeffi- 
cients are evaluated for the binary Coulomb encounters used in plasma physics. 

encounters, which makes the step s izes  of the wa lks  extremely small. For example, at 
typical experimental or laboratory conditions, a particle may average 10 encounters 
(steps) before it reaches a 90' deflection from its initial direction. At  thermonuclear 
conditions this number easily reaches 10l6 steps. Tracing such a large number of 
steps for a representative number of test particles would require an excessive amount 
of time even for today's fastest computers. A selective sampling technique of some 
nature must be therefore employed to the random-walk procedure. 

The coefficients of the Fokker-Planck equation are insensitive to the cutoff assumed 
for  the collisional impact parameter (refs. 11 and 12). As the maximum impact param- 
eter is reduced, the average step size increases, but the number of encounters (steps) 
per unit time decreases. With a low impact-parameter cutoff distance a test particle 
would take a relatively small number of large steps. On the average, however, it would 
reach a specified boundary in velocity space in about the same time as in a walk based 
on a higher impact-parameter cutoff and requiring a large number of small steps. 
computing time, however, var ies  inversely as about the square of the step size and is 
thus much less  for walks based on lower impact-parameter cutoff distances. 

To study results of this sampling technique, it w a s  applied to the end-loss problem 
of magnetic-mirror systems. The scattering of charged particles into a loss cone has 
received considerable attention over a period of years. However, because of the com- 
plexity of the Fokker-Planck equation, the rate of such loss has been determined ana- 
lytically for  only the simplest of cases (refs. 5 and 3). Numerical solutions (ref. 13) 
are available for only a restrictive set  of initial and boundary conditions. Desired also 
a r e  particle distributions inside the mir ror  system for use in stability studies (ref. 14). 

with a fairly straightforward computing procedure. Computing time is made reasonable 
by a sampling technique. Considerable physical detail can be incorporated into such a 
procedure with little increase of mathematical complexity. 

This derivation is extended herein to problems involving three dimensions and 

A main difficulty in obtaining final results is due to the long range nature of Coulomb 

7 

The 

In summarizing, the attempt herein is to exchange a difficult analytical problem 

ANALYSIS 

The general form of a random-walk equation wil l  be derived for walking on a co- 
ordinate grid in N dimensions. (One-dimensional walks with constant step sizes and 
probabilities are treated in refs. 2 and 8. Ref. 2 writes the results in the form of a 
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Fokker-Planck differential equation. Ref. 8 uses  the random walk to derive solutions 
to  some boundary value problems, but does not a r r ive  at  a differential equation as an 
intermediate step. The Fokker-Planck equation is also derived in ref. 8, but not from 
the concept of a random walk on a grid.) It is not necessary for the grid to be orthog- 
ornal or  have constant spacing. Comparison wil l  then be made with the Fokker-Planck 
equation applied to inverse square collisions in velocity space. The results will  be 
adapted to a study of charged particles in a magnetic-mirror system. 

A list of symbols is given in appendix A. The International System of Units (SI) 
will  be used throughout with the exception of temperature T being reported in keV and 
the corresponding Boltzmann constant k in joules per keV. 

Development of the  Random-Walk Equation 

Let tl, t2,  . . . , tN be independent coordinates that span the space of interest. 
Let pi and qi be the probabilities that the ith coordinate wil l  increase or decrease 
during the course of a step. To identify these conditional probabilities, only their loca- 
tion at the start  of a step will  be labeled in their arguments. For example, compared 
with the more conventional nomenclature, 

means 

and 

means 

Let the probability of a step being in the *ith direction be 1/N; that is, 

Let un(t1, t2,  . . . , tN) denote the chance of a particle being at  location 
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,Walk 

(a) Steps along component direc- 
tions; number of components 
changed per encounter, 1. 

,-Walk 

- - P a t h  
' lines 

T 
" € 2  
1 

(b) Steps along diagonals; number of com- 
ponents changed per encounter, 2. 

Figure 1. - Examples of random walks in two- 
dimensional Cartesian coordinates. 

(t17 
starts of the n and n + 7 steps. 

Consider the case for 7 = 1 ,  illustrated in figure l(a). The change in the number of 
particles at (tI7 t,, . . . tN) during A t  is the probability of reaching (c17 t,, . . . , 
4") from the closest neighbors minus the chance of a particle leaving (tl,  t2 ,  . . . , tN) 
and going to a nearest neighbor. Since a step of finite size is taken each time increment, 
there is no chance of a particle standing still. 
e2, . . . , tN) can thus be written 

. . . , tN) at the s tar t  of the nth step and At be the time interval between 

The conservation of particles at ( t1 ,  

5 



where use is made of the first and second laws of composition of probability. 
Multiplying through by 2N and adding and subtracting un terms results in 
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Using equation (l), combining pi and qi te rms  of like arguments and i subscripts, 
collecting un terms and finally writing the result in finite difference notation yields 

which approaches the limit 

as step size (grid spacing) becomes arbitrarily small. 

next consider the case where steps a r e  taken in groups of q = N; one along each coor- 
dinate direction. (This corresponds to the later physical description of a test particle 
in polar coordinates where its magnitude and direction (v, 8, and cp)  change each en- 
counter. ) This corresponds to steps across  the diagonals of N-dimensional lattices 
which w i l l  herein be called path lines. This is illustrated for the case of N = 2 on 
figure l(b). 

This is the more conventional approach to a random-walk expression. However, 

Repeating this procedure with q = N gives 

A t  2 2 At J ati 

This same result could be obtained by letting 

in the derivation regardless of N7 and letting q = 1; that is, there is a sure  chance of 
stepping either in the plus or minus direction of each of the components for each time 
increment At. 

Equation (2) is in the form of the Fokker-Planck equation except that no mixed 

7 



partial derivatives are present. Generation of these te rms  does not appear possible 
when the walks are restricted to the nearest neighbors on a grid. 
be discussed later. 

Note that pi - qi is like a bias in the ith direction and that the terms involving 
first-order derivatives could be, for example, related to  friction. To keep the process 
from being degenerate, pi - qi must approach zero as step size approaches zero (p. 324 
of ref. 2). The te rms  involving second derivatives are similar to diffusion expressions 
with (Ati)  /At similar to a diffusion coefficient. 

When a stochastic process is being simulated by a random walk on a grid, the step 
sizes a r e  often statistical averages. It can be deduced from references 2, 8,  15, or 16 
that second moments determine the proper grid spacing. Consider, for example, the 
application discussed in the next section. In any small region of velocity space the test 
particle taking a random walk encounters many other field or background particles, one 
at a time. A field particle can be in any accessible region of velocity space as it starts 
its encounter with a test particle (its probable location is defined by appropriate distri- 
bution functions). The grid spacings a r e  thus based on statistical averages of encounters 
with field particles (fig. 2), these averages nevertheless being dependent on test- 
particle location. 

Their magnitude wil l  

2 

pi and qi 

d T  

Probabilities of increase and decrease, 
respectively, of ith component 
(i = 1, 2, 3) 

ith component of step size 

V. 
0 I 

Figure 2. - Example of step from (vl, v2, v3) to (vl f 
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Fokker- P lanc k Equation 

The widely accepted Fokker-Planck equation for studying plasmas in N dimen- 
sional Cartesian coordinates is 

(f(Avi Avj)) 

j 
2 avi av 

i, j = 1  

where (af/at), denotes the change of probability density (distribution function of test 
particles) with respect to time due to collisions. The coefficients ( Avi) and ( Avi Av.) 

J 
a r e  averages over distributions of field particles and scattering angle (ref. 11). The 
angular brackets signify a time average; that is, ( Avi) is the average increment per 
unit time of the ith component of velocity. The average value per collision, denoted 
by a bar,  is equal to  the time average divided by the collision frequency v ;  for example, 

The Fokker-Planck equation is transformed to spherical coordinates with symmetry 
= (Avi)/v. 

about the polar axis in appendix B. This is essentially the same coordinate system as 
used in parts IV and V of reference 11. In reference 11, cos 8 is used in place of the 
polar angle 8 used herein. The assumption of aximuthal symmetry is not too restric- 
tive for many problems in plasma physics and serves mainly to reduce cumbersome ex- 
pressions. The analysis follows in a straightforward manner without it. In this coor- 
dinate system 

1 + ____ ”(f sin 0 [2( A0 Av) - v sin 0 cos e( (Aq)’)]} 
2v  s in  0 a0 
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Using the identities 

and 

the Fokker-Planck equation can be written as 

Correspondence Between the Random-Walk and Fokker-Planck Equations 

The random-walk expression (eq. (2)) describes the average results of a large num- 
ber of walks, or a large number of walks gives a numerical solution to the random-walk 
equation. An attempt wil l  now be made to write equation (2) in a form in close agree- 
ment with equation (3) to see whether random walks can provide solutions to the Fokker- 
P lanck equation. 

1; = ~ ( v ,  0) = collision frequency). 
In equation (2) let N = 2, t1 = v, t 2  = 8 ,  and A t  = l / v  (where 

By equation (1) p1 + q1 = 1/2 and p2 + q2 = 1/2. Let 

10 



and 

2 u = fv sin 9 

The random-walk equation then becomes 

- i 

2 2 v sin 0 = - -!-a [v2f ((Av) - ____ +! ( (Ae)  ) +- 
2 av av 2 2 

V 

(5) 
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I 

which differs from the Fokker-Planck equation by the t e rms  involved with f/2 on the 
left side of the equal sign, and by the absence of the mixed derivative term on the right 
side. 

the initial and/or boundary conditions. To evaluate the Fokker-Planck coefficients, one 
must specify the type of encounter. The differences between equations (3) and (5) w i l l  be 
appraised for specific conditions. 

To study these equations further and to  perform random walks, one must specify 

Physical Application 

The preceding results wi l l  be applied to  magnetic mir ror  systems used to confine 
ensembles of electrically charged particles. The Fokker-Planck coefficients wi l l  thus 
be based on Coulomb encounters. The random walks wi l l  determine the ion distribu- 
tions inside and the end loss from a magnetic mir ror  system. Such a system is sketched 
in figure 3 and discussed, along with simplifying assumptions, in appeqdix C.  The ve- 

locity space of prime interest can be best described in spherical coordinates (fig. 4). 
The polar axis is alined with the magnetic field about which there is axial symmetry. 
This B' field is assumed to be uniform over the central portion of the physical space. 
The increased magnitude of at the mir rors  enters the problem by describing a loss- 
cone boundary condition in velocity space. The random walks terminate a t  this boundary 
as if it were an  absorbing wall. These assumptions result in uniformity of f in <p and 
in coordinate space and, thus, reduce a problem in six-dimensional phase space to two 
dimensions in velocity space. 

Mirror maonet 

Maanet 

. .  -__- 

Figure 3. -Magnetic mi r ro r  system. 
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Figure 4. - Spherical coordinates. 

The usual simplifying assumptions applied to  the analysis of magnetic mir ror  sys- 
tems reduce the Boltzmann equation to  

(X = - s  

for steady state (appendix C).  The symbol s represents a sink (or source) density in 
velocity space. For a steady state the rate of particles being injected into the system 
equals the rate of particles entering the loss cone. 
therefore be expressed as 

Loss ra tes  from the system can 

where integration is over the velocity space of the injection distribution. The injection 
distribution provides the initial condition for the random walk. 

left sides of equations (3) and (5), the following equation can be used  
To correct the random-walk results for the difference in the expressions on the 

13 



. . ... . 

The magnitude of this integral w a s  negligible for cases  of most interest. (This wi l l  
be  discussed later. ) When the mixed-derivative term of the Fokker-Planck equation is 
negligible, such as for near isotropic field distributions, ncorrected is equal to that 
determined from the Fokker-Planck equation. 

Fokke r - P la n c  k Coefficients 

Expressions for the Fokker-Planck coefficients for the preceding physical applica- 
tion will  now be supplied s o  that the step sizes and probabilities of equations (4) can be 
deter mined. 

and can be expressed as 
The general integral expressions for these coefficients a r e  derived in appendix D 

( A e )  = -  

l- 
VVb(V - Vb cos 

( A 0  Av) =-  
2 V Y- 
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where p is the ratio of maximum to minimum impact parameter and 

4 

2 2  
(Ze) In p = 0.24 Z4 In p r =  

A2 4 m  om 

is the interaction parameter. 

test  particle is usually just a background particle with a special label. 
paths of a large enough sample should determine test-particle distributions, which for 
a self-consistent solution should be the same as the field-particle distribution. Such a 
solution can be approached by an iteration procedure. A background distribution is first 
assumed; the coefficients a r e  calculated, and the paths of a representative number of 
test particles a r e  traced to  determine their distribution. The distribution of test par- 
ticles in the 2 th step of this iteration a r e  used for the field-particle distribution in the 
2 + 1 step. 
agree within the desired accuracy. The accuracy, o r  amount of scatter of the final data, 
in the example worked herein, w a s  mainly set  by the number of test particles used. 

In the usual problems of interest the field distribution f(Tb) is not known. Also, a 
Tracing the 

This process is continued until the field- and test-particle distributions 

In the first step of the iteration process, use of a Maxwellian distribution is con- 

15 



sistent with the theory of references 5 and 17, It is argued in these references that loss 
ra tes  should be  insensitive to the assumed field-particle distributions. 
herein, this may be considered a first-order solution. The insensitivity to field distri- 
bution may indicate convergence of the iteration process in a small  number of steps. 

provide an especially good first approximation to plasmas which a r e  in near equilibrium 
conditions. An example of such could be inside mir ror  systems having very high mir ror  
ratios s o  that field defects due to loss cones would be small. 

Since a Maxwellian distribution is isotropic, all first  moments of 8 are zero. (An 
isotropic distribution corresponds to the diffusion approximation of ref. 5 and to the use 
of effective Rosenbluth potentials in ref. 11.) Thus ( A 0  Av) is zero, and the mixed de- 
rivative term is absent from equation (3). 

For purposes 

Maxwellian distribution - of field particles. __ - A Maxwellian field distribution should _- _ .  

Use of 

and integrating between the limits 

0 5 <pb 5 2n 

reduces the expressions for  the Fokker-Planck coefficients to the following (see appen- 
dix D): 

( ( A v ) ~ )  = - - kTb (Av) 
mv 
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Using equations (11) in (3) finally reduces the Fokker-Planck equation to 

a2f sin e 
(12) 

+- 
2 sin e ae2 

An interesting relation among the coefficients of equation (11) is 

- i a  - ( v ~ ( ( A v ) ~ ) )  - v( (As) 2 1  ) = - (Av) 
2 2v2 av 

Use of equations (6) and (13) reduces (12) to equation (18 .7 )  of reference 5. 
Equation (12) is especially useful because there is an approximate analytical solu- 

tion to it in reference 5. The random-walk results will later be compared numerically 
to this solution. 

Using equations (11) reduces the random-walk equation (5) to 
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In te rms  of dimensionless variables the average value per collision of the variables 
in equation (11) can be conveniently written as 

(w> 2 =- (Ad)2 
2 sin 0 

1/2 
4 = 0.5 1 8 ~ 1 0 - ~  p2V@ 

"b 

J 

where 

18 



and vo is some reference test-particle velocity. The quantity E: is always refer- 
enced to Tb and velocity v is referenced to vo; thus, v is actually referenced to 
Tb through E:. If Eb/Tb = 3/2, then by the kinetic definition of temperature Eo 
(p. 37 of ref. 18) is the average field-particle energy, and V is the ratio of the test- 
particle velocity to the r m s  field-particle velocity. Thus for most applications 
herein Eb/Tb w a s  set equal t o  3/2. When studying the case of injection of a mono- 
energetic beam of test particles into a background ensemble, however, it w a s  conven- 
ient to set  Eo equal to the beam-particle energy. Thus for example, when the beam 
particles had an energy of 10 times the average field-particle energy, E,/Tb was  set 
equal to 15, making the initial value of V equal to 1. 

for a Maxwellian field distribution are shown in figure 5. These curves were ob- 

tained by use of equations (15a) to ( 1 5 ~ ) .  
Computing - time and impact parameter - - _  cutoff distance. - Setting the maximum im- 

pact parameter a t  the Debye length and the minimum value at  a distance to cause a 90' 
deflection results in 

0. 49x101* T e i j 2  

z2n:I2 

- 
13Debye - 

I 

1 "L \ \  
Ln 
L 
W c 

m, 
m CL 

W 

n 
W c 
L n  

\ 

I I I I I 2  
2.8 3.2 3.6 4.0 

0 .4 . a  1.2 Velocity 1.6 parameter, 2.0 V p E0/Tb 

Figure 5. - Generalized step-size parameters in V and 8 directions. 
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for Tb (in Kev) and nb (in ~ n - ~ ) .  Numerical values are given in table 5. 1 of refer- 
ence 12. 

the average deflection which a particle undergoes per collision (Ae)2/v is extremely 
small, as can be deduced from figure 5. Thus the corresponding computing time re- 
quired to trace representative samples of test particles would be prohibitively large. It 
was observed from the elementary one-dimensional (and nonbiased) random walks of 
reference 8 and also from preliminary computer results that the average number of 
steps to  reach a distance m steps away from a starting point w a s  nearly proportional 

2 2 to  m . The time to take such a walk would thus be nearly proportional to m /v. For 
a random walk in the 8 direction the distance reached per unit time would correspond 
to  vS, which is simply the diffusion coefficient ( ( A Q )  ) . 

impact parameter cutoff distance only through the Fokker-Planck coefficients. A s  shown 
by equations (9) and (ll), these coefficients a r e  only weakly dependent on impact param- 
eter  ratio p. It thus appears that a particle taking the fewer number of larger steps 
determined by a lower p cutoff would reach given locations in velocity space in about 
the same time as if  it took the larger number of smaller steps determined by a higher p 
cutoff point. The final walk time (loss rate) would possible be weighted by a function of 

P. 
As part of the following computer study, the effect of p on loss ra tes  from and 

distributions inside magnetic mir ror  systems w a s  determined. Cases were selected 
that could be solved analytically for comparison with the random-walk results. 

If the maximum impact parameter is cutoff at the Debye length as in equation (16), 

7 

2 

Solutions to processes described by the Fokker-Planck equation a r e  dependent on 

Numerical Procedure 

The procedure by which the random walks were simulated by the computer and the 
manner in which velocity distributions inside and end losses from the magnetic mir ror  
system were obtained from the walks wi l l  now be described. 

A computer flow diagram and a representative FORTRAN program a r e  presented 
in appendix E. Either the Lewis IBM 7044-7094 or 7040-7094 direct coupled systems 
were used to perform the calculations. 

from prescribed injection distributions. 
boundaries Oc and B - O c  where 

Initial conditions for each random walk were determined by selecting at  random 
The walks were terminated at the loss-cone 
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-1 1 e =sin 

l6K C 

and Bc/Bo is the ratio of the magnetic field at the mirror  to that in the central uniform 
region (ref. 12). 

In any of the steady-state models selected for  study herein, the average number of 
particles injected per unit time equals the rate  at which particles enter the loss cone. 
The walks were studied one at  a time, and a large enough number of them were traced 
to form a representative statistical sample. 

The velocity space to which the test particles had access w a s  divided into zones. 
For each of these zones values of probabilities p1 and p2, step sizes ~ ~ A v ) ~ ) / v  and d G G ,  and collision frequency were computed for the field distribution of inter- 
est. These quantities w e r e  stored in matrix form and called for as the tes t  particle 
progressed about the velocity field, as described in appendix E. 

During each step of each walk, a random number w a s  selected for each of the two 
components (V and 8 )  and compared with probabilities p1 and p2, respectively, to 
determine step direction. These random numbers were selected from a set of numbers 
uniformly distributed over the interval from 0 to 1 (ref. 10). Whether the V compo- 
nent of the step were in the positive or negative direction depended on whether the first  
random number w a s  greater or  less  than pl. In like manner, the second random num- 
ber determined the direction along 0 .  

every step. They were, instead, tallied at constant time increments AT. Each time 
increment included A T V ( V , ~ )  steps. A count w a s  kept of the number of times a test 
particle w a s  found in each of the velocity zones (boxes). A large enough number of 
test particles Amax were walked to  determine a velocity distribution. 
ments were selected so that usually no less  than 10 nor more than 100 steps were taken 
between tallys. The number of AT'S required to reach the loss cone w a s  recorded to 
determine time of confinement and thus loss ra te  (appendix E). 

mined with the test-particle distribution used as the field distribution. 
the tally matrix were reset  to zero and the process repeated, if  desired, for the 1 + 1 
step of the iteration. 

cutoff p, sample size Amax, and iteration index for suitable field convergence 

2 = Imax. 
selected either for reduction of computer time or for comparison of random-walk re- 
sults with cases having analytical solutions. 

Because step sizes were so small, the test-particle locations were not recorded 

The time incre- 

After each set of Amax walks ,  new step size and probability matrices were deter- 
The elements of 

Numerous computations were made to explore the parameters of impact distance 

External conditions such as mir ror  ratio and injection distribution were 

21 



RESULTS AND DISCUSSION 

Inf luence of Impact Parameter 

The scattering angles, thus step sizes, descriptive of Coulomb encounters are, in 
general, so  small that even to evaluate the effect of p with a reasonable amount of 
computing time, required selection of very short walks. Short walks were obtained by 
using low mir ror  ratios (Bc/Bo M 1). The initial condition for  this study w a s  set to 
simulate injection of monoenergetic particles normal to the magnetic field 0 = ~ / 2 .  
Computations were carried out only for I = 1 and a Maxwellian field distribution. 

A generalized parameter descriptive of the rate at  which particles first reach pre- 
scribed conical boundaries in velocity space is plotted in figure 6. 
(ec and T - eC)  were selected s o  that no set  of (either 100 or  1000) particle walks took 
more than 15 minutes of computing time. At least three p values were used for each 
boundary condition. The mir ror  ratios (eq. (17)) became extremely close to one as 

approached values representative of Debye lengths; in fact s o  low that these re -  bmax 
sults have little direct  application to mirror  systems of interest. These results may be 
viewed as determining the average length of walk required to first reach a certain conical 
boundary in a Maxwellian field. 

The regions of velocity space covered by the walks were so small  that the step sizes 
and probabilities could be assumed constant over the length of the walks. This, in turn, 

These boundaries 

Distance between start 
and f i n i sh  of walk, 

rad 
h 2 )  - e, I, 

0 ,180x10-1 
0 .208x10-2 

0 0.147 

n . B~xIO-~ 
n . 2 9 4 ~ 1 0 - ~  
A . 3 9 0 ~ 1 0 - ~  

Fokker-Planck solut ion 
(see appendix F) 

Open symbols denote 1000-walk sampling size 
Solid symbols denote 100-walk sampling size 

c1 1 . 0 r - 1 9  
klN m - =  

I I I I I I I  a, 

m LT 
- 

0 1 2 3 4 5 6  7 8 
Logarithm of impact-parameter ratio, log p 

Figure 6. - Effect of impact-parameter cut-aff distance o n  rate of reach- 
i ng  prescribed 0 distance away from start ing point at 7d2. Singly 
charged particles of mass number 2; rat io of reference energy to 
field temperature, 15. 
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permitted an analytical solution of the Fokker-Planck equation (appendix F) which is 
shown by the line on figure 6. 

This analysis gave the result that the loss-rate parameter 

hTi12(: - 0 .) 2 

- 

w a s  equal to  a constant. This was  verified over a range of p (from 10312 to 
by the computer results to within a spread of loss parameter of about 10 percent. 

t r i k t ion  in V 
Some typical test-particle distributions are shown in figure 7. The marginal dis- 

Fv(V) = - f(0,v)sin 0 de = F(0, V)dO 

is a delta function in the analysis. It is sharply peaked in the computer results, nearly 
all of the points plotted lying inside 0.998 5 v/vo I 1.002. The marginal distribution in 
e 

f(e,v)v dv = 1 F(8,V)dV J 0 

sin 8 Fe(8) E- 

% o 

for both the theory (appendix F) and the computer experiment can be represented by 
straight lines and agree well with each other. 

The theoretical distribution from appendix F is 

li- when 8 5 0  s -  
2 C 

71 - - 2 
- - ec 

when - I 0 5 a - 
2 - - e, 71 

2 
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Figure 7. - Test-particle distr ibut ion for short walks and constant coefficients. Ratio of reference energy to field 
temperature, 15; sampling size, 1ooO; impact-parameter ratio, IO4; distance between start and f i n i sh  of  walk, 
0.00209 radian. 
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The theory and computer experiment appear t o  be in satisfactory agreement for pur- 
poses herein and encouraged applying the random-walk method to more complicated and 
practical models. 

Comparison With the First-Order Solution of Budker 

___- Analytical solution. - Among the very few analytical solutions of the Fokker-Planck 
equation applied to  a magnetic mir ror  system is that of Budker (see refs. 5 and 19). 
This analysis makes the usual simplifying assumptions of appendix B plus the assumption 
of separability of the test-particle distribution functions; that is, it is assumed that 

inside the mir ror  system, and that the injection distribution (source) function is 

r;(e,v) = se(e)$(v) 

-mV 2 /2kTb 
Solutions a r e  then sought where fv(v) is of the form e 
particles perpendicular to  the B field the solution of reference 5 is 

. For injection of 

where the constant C can be used for normalizing. Results were reduced to this form 
by approximation of an integration over 8 by the mean value theorem. The end-loss 
rate becomes 
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or 

31 ‘Os ‘c = 3.72X10- hT3j2 & 

In this solution the Fokker-Planck coefficients were based on a Maxwellian field 
distribution. It is thus like a first-order solution. 

No energy gain or loss from the system w a s  considered other than that added by the 
injection process or carried away with the escape of particles through the mirros.  Thus 
the mean energy of the particles injected Einj should equal the mean energy of the par- 
ticles escaping for a steady-state solution. Integration of the product of equation (21) 
times 1/2 mv2, and then division by n gives the mean energy per test particle to be 

Einj = 0.43 kTb 

Thus the test particles are injected at a low energy to f i l l  in the deficiency in velocity 
space due to the predominant escape of low-energy ions. 

gained from inspection of the step sizes and probabilities of taking steps in the various 
directions. Step-size parameters for the V and 0 components and for a Maxwellian 
field distribution are plotted in figure 5. Values w e d  in a typical set of walks are given 
in a matrix form in the computer listings presented in appendix E. 

can be envisioned. Use of the step sizes d x  and 4 5 ;  from figure 5 
permit study of the path lines fo r  a Maxwellian field distribution. The magnitude of the 
slopes of such path lines increases with an increase of V because of the pronounced 

decrease of {T with V. It is apparent that the path line pattern is most conducive 
to the escape of particles at low V. It is in turn relatively easy for  a particle in the high 
slope region to go to still higher velocities where escape is more difficult 

The bias te rms  are equally important in the test-particle behavior. Entering into 
the bias term (pl - ql) in the V direction (eq. (4)) is a dynamic friction term z. 
This term (discussed in ref. 7) is negative and tends to re tard the test particle to zero 
mean velocity. Opposed to influence .of 

Random-walk solution. - Some preliminary insight into the random walk can be 

For a given field distribution, path lines, as shown schematically on figure l(b), 

are the positive valued expressions 
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which tend to diffuse the particles to the thinly populated regions of 
spherical coordinates the available volume in velocity space varies 
large amount of room for particles at high V. 

space at high V. 
as V , making a 2 

Similar te rms  appear in the (p2 - q2) bias, which occurs in the 8 direction. All 

In 

t e rms  except the last (sin 8 cos 8 / 2 ) ( A ~ ) ~ ,  are zero for a Maxwellian field distribution. 
For higher order solutions (1 > 1) the and -A8 AV/V te rms  tend to  move test par- 
ticles toward 8 = r/2. These te rms  thus help confine the particles. Opposed to  this 

are the - l /v (a (  (A0)2)/a8) and [(sin 8 cos 0)/2] ( A v ) ~  terms that make it easier for the 
particle to escape. 

numbers from a distribution to simulate the injection velocity pattern of equation (20) as 
shown in appendix G. The walks were always started at the 8 = n/2. 

Preliminary computer results verified that the test particles which were injected 
at  low energies (according to  eq. (21)) had a good chance of escaping with a relatively 
low number of steps. If, however, they remained inside the mir ror  system and by 
chance diffused to the high velocity region, their rate of escape w a s  much reduced, even 
though the collision frequency w a s  increased at  high V. The test particles rush to such 
higher velocity zones at the expense of energy given up by the field particles. The field 
temperature w a s  thus corrected for the energy exchanged with the appropriate test par- 
ticle after each walk (appendix E). 

walk procedure a r e  compared with the analytical results of reference 5 in figure 8. In 
general, the test particles distributed inside the mir ror  system in much the same pat- 
tern as predicted by reference 5 (figs. 8(a) and (b)) for the first-order results (1 = 1). 
As the iteration process w a s  continued, the test particles distributed in a slightly dif- 
ferent pattern. The peak of the distribution shifted to  a slightly higher V. Beyond a 1 
of 2, however, changes were within a 10- to 20-percent scatter of the data for the usual 
sample size Amax of 500 particles. No attempt w a s  made to optimize sample size 
against p. The parameter p w a s  usually selected for completion of Amax times 

The initial locations of the test particles were determined by selection of random 

Comparison of results. - Test-particle marginal distributions from the random- _ _ -  

walks in 20 minutes of computer time. max 
Starting the 2 = 1 calculation with the field-particle distribution in the 8 direction 

cutoff at O c  and a - 8, appeared to give results as good as starting with a full Max- 
wellian distribution and completing the 1 = 2 step. 
steps in the iteration process (Imax) could be reduced by one. 

simplify analytical approaches (refs. 3, 5, and 19). 

By s o  doing the final number of 

The assumption of separability (eq. (19)) of the distribution function is often used to 
This appears justified for the typi- 
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(a) Test-pariicle d is t r ibut ion in V direction. 

'r 

(e - eC)m -  pi 
(b) Test-particle distr ibution in 8 direction. 

Fiaure 8. - Comoarison of random-walk results wi th  analysis of reference 5. Ratio of reference -~ . .. 
energy to field'temperature, 1.5; sampling size, 500; aiomic number, 1; impact-parameter 
ratio, 105'2. 
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(d) Distr ibut ion of particles as they f i rs t  enter loss cone. 

Figure 8. - Concluded. 

cal set of data on figure 9. The open data points were obtained from the test-particle 
distributions of the random walk. These are a normalization of the KTJK(J,K) matrix 
(appendix E).  The solid symbols denote the product of the random-walk marginal dis- 
tributions in f3 multiplied by the random-walk distributions in V. The lines are the 
analytical results of reference 5. The shift of the peaks of the computer results to values 
slightly higher than the analytical results is not due to the separability assumption. Good 
agreement is shown between the two studies for  the outlet (loss cone) as well as for the 
inlet o r  injection distribution (figs. 8(c) and (d)). Thus the injection distributions of 
reference 5 appear quite satisfactory for a steady-state solution. 

A comparison of the random-walk loss ra tes  with the results of reference 5 is 
shown in figure 10. Agreement is close at a mir ror  ratio of 1.2. At higher mirror  
ratios, however, the loss-cone boundaries are extended enough that the chance of a par- 
ticle walking to high V fields before escape is considerably improved, accounting in a 
large part for the reduction of loss ra te  with increase of Bc/Bo. 

The rather steep decrease of loss rate with mir ror  ratio obtained from the random 
walks quite closely follows the l/log(Bc/Bo) trend predicted in references 3 and 13. 
The results of reference 5 differs by the inclusion of cos 8, in equation (22). 
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Figure 10. - Comparison of random-walk loss rates w i th  t h e  ap- 
proximate analytical solution of reference 5. 

The correction to the source term consisting of higher order te rms  in equa- 
tion (8) w a s  evaluated numerically for a Maxwellian field distribution. 
equation (8) reduces to 

For this case, 

- 0.003X10- 30 Z4n2 log p 
1/2T3/2 corrected = nrandom' walk n 

m 

This correction, independent of mir ror  ratio is negligible in the random walk results on 
figure 11. 

Computer - -  . time -_ expenditure. - Each complete set of Amax walks and I steps in 
the iterative procedure required less than 20 minutes of computer execution time. It 
appears that this random-walk procedure could be extended to include special or time 
coordinates, or both, and work more general problems with reasonable computer time 
expendi tur e. 

C ONC LU S I ON S 

From a study of computer simulation of random walks of charged particles through 
ensembles of field particles inside magnetic mirror  systems, and by comparison with 
results obtained from the Fokker-Planck equation for cases  that could be solved analyt- 
ically, the following conclusions were reached 

1. Computer time could be greatly reduced with no noticable reduction in accuracy 
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by a selective sampling of random numbers from the low impact-parameter range of 
the binary collisions used herein. 

2. Test-particle distributions were insensitive to the assumed field-particle dis- 
tributions. 

3.  The assumption of separability of the velocity distribution appears suitable for 
application to mirror  system analyses. 

4. End losses determined by the random-walk method were in close agreement with 
an approximate analytical solution of the Fokker-Planck equation at low mirror  ratios. 
At higher mirror  ratios the loss-cone boundaries increase permitting more test par- 
ticles to  reach the higher regions of velocity space where escape i s  much more difficult. 
The loss rate varies inversely as the logarithm of the reciprocal of the mirror  ratio. 

5. Each complete calculation, for a given set of initial and boundary conditions (in- 
jection velocity distribution and mirror  ratio), was  completed within 20 minutes of com- 
puter time. The study w a s  limited to steady-state problems in velocity space. It ap- 
pears  that this random-walk procedure could be extended to  include spatial or time co- 
ordinates (or both) with reasonable computer time. 

Lewis Research Center, 
National Aer onaut ic s and Spac e Adm ini s t r  at i on, 

Cleveland, Ohio, October 20, 1969, 
120-27. 
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APPENDIX A 

SYMBOLS 

[The International System of Units (SI) wi l l  be used throughout with the exception of 
temperature T, reported in keV, and the corresponding Boltzmann constant k, re- 
ported in J/keV. ] 

mass  number 

determinant of elements in metric tensor 

elements of metric tensor 

elements of cofactor of metric tensor 

magnetic field 

impact parameter 

normalization constant 

energy 
mvo/2k 2 

electric unit of charge 
2 

"b 

v0v sine 
normalized probability density times scale factors, f(v, 0 )  

normalized marginal distribution in 0,  F(0, V)dv 

normalized marginal distribution in V, /n-" F(0, V)d0 

0 
probability density 

Rosenbluth potential = j f 6 b ) u  dTb 

Heaviside unit function 

Rosenbluth POtelltial = j i G b )  1 dFb 

Boltzmann constant = 1. 6X1O-l6 J/keV 

step number in iteration process 

mass  
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N 
n 

n 

Pi 

qi  

qu 

SI-lV 

s 

r, R 

TI-l 

T 

t 

U 

dt 1’ 

V 

Y 
V 

Y 
Z 

P 

r 

6 

E 

€0 

r) 

52’ . . .  

number of dimensions 

number density 

number of particles lost per unit t ime per unit volume of coordi- 
nate space 

probability of 1 step in the positive direction along the ith coordi- 

probability of 1 step in the negative direction along the ith coor- 

nate 

dinate 

general curvilinear coordinate 

I’-’(AqP Aq’) 

number of particles injected per unit time per unit volume of phase 
space 

random numbers 

temperature 

I’- ’( ASp) 

time 

magnitude of relative velocity between a field and test particle 

probability of particle being located at grid location , tN) 
51, 52 ,  - -, t N  

v/vo 

random number 

velocity 

some arbitrary collisionally dependent quality 

atomic number 

impact-parameter ratio, bma,/bmin 

@,I4 In P 
interaction parameter, = 

2 2  47r~ om 

delta function, also used to denote finite difference 

azimuthal angle between orbital and fundamental collision planes 

capacitivity of vacuum 
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17 

e 

'r 
V collision frequency 

t arbitrary coordinate in phase space 

u differential scattering c ross  section 

CP azimuthal coordinate 

c2 solid scattering angle 

Subscripts: 

b field particles 

C 

e elec tr on 

inj injection 

0 reference value 

Special symbols: 

number of components changed per encounter 

angular distance from polar axis 

angle between test and field-particle velocity vectors 

collisional value, a lso used to denote loss cone or value at mir ror  location 

average per- collision or per step - 

0 time average 

I 
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APPENDIX B 

TRANSFORMATION OF THE FOKKER-PLANCK EQUATION FROM 

RECTANGULAR CARTESIAN TO SPHERICAL COORDINATES 

The Fokker-Planck equation can be written in rectangular Cartesian coordinates as 

a (f(Avp)) + -  a2 (f(Avp Av’)) 
= - dv(l avp avv 

Superscripts a r e  used in this appendix to denote component direction, leaving subscripts 
to denote covariant differentiation. 
used. The subscript c on af /a t  means changes of f due to  collisions. 

in covariant form as 

Summation convention of repeated indices wil l  be 

Following the procedure of appendix IV of reference 11, this equation can be written 

I?-’(:) = -(fTP), El + A  2 (fSPv) 9 PV 
C 

1 2 3  which is valid for any set  of curvilinear coordinates, q , q , q . 
The quantity is an interaction parameter, 

and 

The 

For 
tion. 

terms rSpv are dispersion coefficients, and FTP is related to dynamic fric- 

1 2 3 spherical coordinates q = v, q = 8 ,  and q = cp.  The elements of the 
metric tensor are  

all = 1 

2 a22 = v 
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2 2  a33 = v  sin f3 

a = O  if p # v  
P V  

and the elements of its conjugate a r e  

a''= 1 

a33 = 1 
2 2  v sin f3 

By the procedure of covariant differentiation 

(fTp), I.1 =e+ {kp} (fTO) = - - a (&fTp) 
asp 6 asp 

where the Christoffel symbol {lp} with repeated indices equals - - and a is 
A aaa 

For spherical coordiAtes 
I-L v -  the determinant of the matrix of elements a 

4 2  a = v sin 8 

Thus, 

r(fTP), E-l = - - a (v 2 f(<Av>) +-- a (f sin €J(Ae>) +a (f(Aq)) 
V 2 av sin e ae a<p 

In like manner 
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and for spherical coordinates 

+- 2fv(sin e ~ 1 3  + v cos e s 23 ,I 
a@ a [  

where use is made of the symmetry of Sw. Finally the Fokker-Planck equation in 
spherical coordinates becomes 

a (v 2 f(Av)) a (f sinB(A0)) --(f(Aq))+- a 1 a2v2f((av)2> +- 1 a2f sin e((ael2> 
sin e ae %J 2v2 av 2 2 sin 0 ae2 

’ a (sin e f (ae  ~ q ) )  (v f(Av Arp)) +- - + -  ’ a f((Arp) ) + A - ( v  sinOf(AvA0))+-- 
a402 v’sin 0 av ’ e  v2 av acp sin e ae a q  

2 a2 2 i a  2 2 

03 3) 
- 12 [v3f (( + ~ i n ~ O ( ( A q ) ~ ) ) ]  + A0 Av) - v sin 0 cos e( (Aq)’))] 

2v2 av 2v sin 0 80 

38 



APPENDIX C 

PHYSICAL MODEL OF MAGNETIC MIRROR SYSTEM 

The physical model to which this analysis is applied is the usual simplified one, 
we l l  described in many references; such as, for example, pages 186 to  189 of refer- 
ence 5, pages 3 to 5 of reference 13, pages 2 and 3 of reference 3, and pages 7 to 9 of 
reference 17. In essence, the magnetic mirror  system provides a long cylindrical re-  
gion of uniform magnetic field (fig. 3). The mirror regions are assumed to be rela- 
tively short so that essentially all the Coulomb scattering occurs in the central re- 
gion. 

Once a particle enters the loss cone in velocity space, no matter where it is in 
physical o r  coordinate space, it is assumed lost from the system. Only scattering of 
ions off other ions is considered. Thus electrons serve only as a neutralizing and 
shielding background of particles. For study herein, no macroscopic electric field wi l l  
be accounted for except possibly as a boundary condition in the manner of reference 20. 

The radius of the confining field must obviously be much larger than the ion cyclo- 
tron radius. This can be accomplished by suitable magnitude of the B field. The 
azimuthal symmetry of the B field makes V'X E - Vvf = 0 as shown in appendix A-1 
of reference 13. 

These assumptions culminate in the elimination of the gradient terms, in velocity 

Only binary collisions and classical particles wi l l  be considered. 

as well as in coordinate space, from the Boltzmann equation. 
thus reduces to 

The Boltzmann equation 

af= (;)c + s 
a t  

where (af/at), is the change of f due to collisions, usually determined by the Fokker- 
Planck equation, and s represents a sink density in velocity space, uniform in coordi- 
nate space. 
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APPENDIX D 

FOKKER-PLANCK AND RANDOM-WALK COEFFICIENTS 

IN SPHERICAL COORDINATES 

The Fokker-Planck c0efficient.s are time averages of various first- and second- 
order increments of velocity due to collisions. The random-walk process, in turn, re- 
quires the average per collision of these same velocity increments. The two types of 
averages, denoted by the angular brackets and bar notations, respectively, di'ffer by 
the collision frequency V. Thus only one set of coefficients and the collision frequency 
need be derived for the physical conditions of interest. 

The time rate of change of some collisionally dependent quantity Y averaged over 
all scattering angles and all velocities of the scattering (field) particles is 

where the subscript b refers  to  field particles, and (T is the differential cross section 
of scattering over the solid angle 51. The magnitude of the relative velocity between a 
test-particle of velocity v' and a field particle of velocity cb is 

where 9r is the angle between v' and Fb. 
is denoted by fb and is normalized so that 

The distribution function of field particles 

Using Rosenbluth potential (ref. 11) defined as 

and 
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and letting Y equal the ith component of Av' yields (ref. 11) 

i = 1, 2, 3, ah ( A V ~ )  = r- 
avi 

the covariant form of which is given by equation (Bl) 

For  Coulomb encounters 

z4e4 ~n p 

47re om 
r =  

2 2  

where @ is the ratio of the maximum impact parameter bmax to minimum, bmin. 
When Y is set equal to the product Avi Avj, it follows that (ref. 11) 

i, j = 1, 2, 3 

and the covariant form is given by equation (B2, as 

(Asp  Aqv) = rapLWaV7(g ) 
7 w 7  

When Y = 1, it is apparent from equation (Dl) that the collision frequency is ob- 
tained. Using the well known scattering relation involving solid angle 52,  impact pa- 
rameter b, and azimuthal angle E 

a(52)d!d = b db de 

in (Dl) gives 

which is an invariant and independent of the coordinate system. In spherical coordi- 
nates, the coefficients of main interest a r e  
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ah (Av) = r- 
av 

r ah 
2 ae 

(Ae)  =-- 
V 

((Av) 2 ) = r- a2g 
2 av 

((Ad) ) =-  r - " + v -  
V 4(a:2 ::) 

( ( A d 2 >  = r (% + v sin 2 e ag - + sin e cos e 
4 4  av v s in  8 acp 

r ( A 6  A q )  = 

These expressions can be reduced one step further without specifying fb since differ- 
entiation is with respect to  the coordinates of the test particles. 

( A v  A q )  ( A 6  A q )  a r e  zero. The remaining expressions a r e  reduced as follows: Using 
Azimuthal symmetry. - For aximuthal symmetry a / aq  is zero and thus ( A q )  

~ --- 

cos 8r = cos e cos eb + sin e sin ob cos(q - qb) 
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and differentiating under the integral sign gives 

(Ae) = - 

f(Fb)dTb @e) 3 2 2  2 v vb [sin e cos eb - cos e sin e,, cos(p - pb)] - ~- V 

(v2 + v; - 2VVb cos ar V 1 /2  

where bmin was  set  equal to  the classical distance of closest approach 
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The average 

- 
AV 

value of these quantities per collision, in dimensionless form, are 

(D4b) 
- cos e sin ob cos(cp - pbjj 

3/2 

V J1I;".Vi - 2 W b  cos Sr f(Tb)dTb 

@ 4 4  

(A0 AV) - 9 In P 0' P V  
AQ AV = ~ - 

4 2 2 E b  

f(Vb)dVb j'b 3 @&) 

v2 ~ - v 2 v i E i n  e sin ob - cos o cos eb cos(p - pbj 
v + v - 2VVb cos Br (v2 + v; - 2 W b  cos Br) 

3/2 
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(sin 6 sin 6, + cos L2 - vv. .. ~. 

IT. \ 2  

and 

where 

Maxwellian distribution. - A popular simplifying assumption is that the field par- 
ticles are distributed in a Maxwellian spherical distribution. This a case of the "diffu- 
sion approximation" on page 175 of reference 5 and corresponds to the use of "effective 
Rosenbluth potentials" a s  on page 15 of reference 19. With this assumption 

For a spherical distribution, 9r can be replaced by ob' Integrating between the limits 

and 
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gives 

The remaining potential h can be obtained from 

2 h = Vvg = - 
V 

Since both g and h a r e  independent of 8 and c p ,  it is apparent from (Bl) and 
(B2) that 

(A8) = (Aq) = (A0 Av) 3 0 

The remaining terms of interest for this field distribution a r e  

and 

((Av) 2 ) = - -  kTb (Av) 
mv 

46 



2 These expressions for (Av) and ((Av) ) agree with those of reference 5 and with 
those of Chandrasekhar (pp. 73 to 75 of ref. 12). These coefficients a r e  called paral- 
lel components since they are changes in v in a direction parallel to v. Agreement 
with these references is also obtained for the perpendicular component of diffusion 
which is 

Remaining quantities of interest are 

2 Tb - ( A v )  = -- AV 
2VEb 

2 

2 
Eb/Tb + 

( A v ) ~  = - ( A s p  
2 sin 0 

and 

where B >> 1. 
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APPENDIX E 

DESCRIPTION OF COMPUTING PROCEDURE 

A flow chart representing a typical calculation procedure is given in figure 11. The 
corresponding FORTRAN program and some typical results are included at the end of this 
appendix. This is preceded by a key to the computer words. A brief description of the 
program to perform the random walk studies is given in the following discussion. 

The distribution of field particles is represented by KTJK(J, K) matrices. The 
indices J and K represent partitions in V and 8, respectively. In most of the com- 
putations this w a s  an 11 by 13 matrix, thus dividing the velocity space of most impor- 
tance into 143 zones. The initial (LL=l) field distribution w a s  read from data cards. 

These zones were identified by subscripts M and L. Step sizes, DVSQAV(M, L) and 
DXSQAV(M, L), and probabilities, TWOP(M, L) and TWOR(M, L), were computed over 
the ranges of M and L for the field distribution specified by the KTJK matrix. Inte- 
gration of equations (9) with respect to  q w a s  by Gaussian quadratures. Integrations 
with respect to V and 8, weighted by v sin 8 f(v, 0) as in equations (9), were replaced 
by summations over the J and K indices with weighting by KTJK(J, K). 

Because step s izes  a r e  so small, the test-particle locations were only recorded 
every MMAX(M, L) steps. To  obtain steady-state distributions, it is desired to  locate 
the test particle after each small constant increment of time, AT. The number of steps 
per  constant increment of time is 

The velocity field to which the test particles had access  w a s  also divided into zones. 

2 

where RMAX is the rea l  number counterpart of integer MMAX. The value of RMAXl 
is specified a t  the beginning of the program and should be judiciously selected to keep 
computing time down and yet obtain accuracy. 

An alternate procedure to the use of velocity zones and matrix descriptions when 
LL=1 w a s  to specify a Maxwellian distribution of field particles and use equations (15). 
In this way the step sizes, probabilities, and number of steps per  time increment a r e  
continuous functions of test-particle location and a r e  integrated over a continuous field 
distribution. A comparison of this procedure with the matrix procedure served as a 
check on the required number of velocity zones for  sufficient accuracy in the matrix 
representation. Excellent agreement was  obtained by use of the 11 by 13 matrices. 
Suitable values of RMAXl varied from 10 to 10 depending primarily on p. 

The test particles were labeled by A (used as an integer). It w a s  found that the 

3 
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walks of about 500 test particles (AMAX=500) w a s  required for a representative sample. 

being simulated. 
at n/2, representative of monoenergetic injection and normal to B field. 
condition w a s  used in the short walk calculations. 
bution of reference 5, the procedure of appendix G w a s  used. 

The random-walk proper comprised a small part of the programming effort. In 
the two-dimensional space of interest it required the random selection of 2 numbers, 
RNR and RNS. The call, RAND (RNl), for the first random number, RN1, must be 
preceded by SAND (RNl). This sets  up addresses in the congruence type of random- 
number generator subroutine of the Lewis computer library. This is a pseudo-random 
number generator inasmuch as each time SAND (RN1) is called the same sequence of 
random numbers is started again. Comparison of RNR and RNS with TWOP and TWOR 
determines in which directions the steps a r e  taken. Step sizes and probabilities a r e  
held constant over MMAX(M, L) steps. After MMAX steps a r e  taken the new location of 
the test particle is determined and tallied. Also after MMAX steps the energy transfer 
between the field and the test particle is determined and summed to that of the preced- 
ing N groups of MMAX steps. 

If the test particle has not yet reached the loss cone, it is tallied according to the 
procedure on the lower right of the flow chart. It is simply located in one of the veloc- 
ity space zones and credited to the corresponding element of a KTJK matrix. A cer- 
tain probability exists for a particle to wander about indefinitely inside the mir ror  sys- 
tem without being lost. A walk length of 5000 MMAX steps w a s  therefore set  as a limit, 
after which the walk would be terminated and the next particle selected. 
of such walks w a s  labeled IBAD. 

The initial conditions for the random walks depended on the injection distribution 
For the example on the flow chart, V2 w a s  always set a t  1.0 and X2 

For simulating the injection distri- 
This initial 

The number 

When a test particle reaches a loss-cone boundary, the flow in the chart moves to 
the left. If it is the A M t h  particle, the tallying procedure in the lower left is fol- 
lowed. The marginal distributions in V and 8 a r e  then determined along with a 
counting of the total number of points (KTOT) tallied in the KTJK matrix. 
the values of N when the particles first reached a loss-cone boundary is printed out 
as SUM of NA. 

v(n/2, 1); and define QUCOR by 

The sum of 

Denote the collision frequency per test particle a t  X2 = n/2 and V2 = 1 by 

Mass of a deuteron 
QUCOR = 

Then by use of equation (9g) 
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Ln 
0 c-) 

I < CALL SAND(RN1) \ 
I 

READ EOPT, BMAX, RMAXl ,  AMAX, LMAX 
XMIN. XMAX, V H I ,  XHI, DELVHI. DELXHI 

I 
\ READ KTJKU. K I  J = 1. 2 . .  . . . 11: K = 1. 2 . .  . . . 13 / 

I 

CALCULATE AND WRITE DVSQANM, L l  
DXSQAVIM, L), lWOP(M, L) lWOR(M, Ll,  MMAX(M, L) 
AND OUCOR. M =  1.. . . . 11: L =  1. 2 . .  . , . 13 

/ KMARGV(J1 = KMARGX(K1 = KTJK(J, K) = 0 
KTOT = SUMNA = I B A D  = DVNSQ = D \ TR = 1.0 

V I N J  - V 2 =  1.0, X 2 =  d 2 .  N = 1. I X -  IY = O  
1 

VHH = VHIOTTR 
DELVHH = DELVHPTR 
M = IFIX((V2 - VHHIDELVHH) t 2.0 

M M X  = 1 

c = IFIXKXL - XHIIDELXHI) t 2.0 

t 
/ CALL RAND (RNR) \ 1 

CALL RAND (RNSI 

-++-I R N S < T W O R  Yes I X - I X  t 1 t 
M M X  -MMX t 1 a 

VOUT = V 2  t FCOATIIY)= DVSQAV(M,X l  
XOUT = X2 t FLOAT(1X) = DXSQAVtM, U 
DVNSQ = DVNSQ t VZ""2 - VINJ'"2 

Random walk 



&+- 
I 1 

I KMARGX(K) = KMARGX(K1 t KTJK(J. K) I 
1 I 

K = 13 

WRITE KTJK(J, K), KMARGXIKI 
KMARGWJI, J = 1, 2,. , , , 11; K = 1. 2,. . . , 13 
KTOT, QUCOR, SUMNA, A M  

Yes LL -LL t 1 

End 

Figure 11. - Flow chart. 



for z = 1. The average number of AT time increments per walk is SUMNA divided by 
AMAX. The average number of walks per unit time multiplied by 
fkz/2/nbNm/Mass of a deuteron is then equal to (QUCOR AMAX)/(SUMNA - RMAXl), 
and the loss rate parameter can be expressed as 

nT3’2& 0 . 5 7 8 ~ 1 0 - ~ ~  QUCOR * AMAX 
2 SUMNA - RMAXl n 

After each walk, the field temperature is corrected to account for the energy trans- 
ferred with the test  particle. Assuming AMAX particles in the field ensemble results in 

SUMNA 
ATb - A F (1722 - V I N J ~ )  
Tb SUMNA. AMAX U 

N= 1 

The correction is applied through the dependence of step s izes  and probabilities on 
vd- as in equation (10). 

late new step size and probability matrices, and the iteration process in LL is continued 
until LL reaches LMAX. 

After A reaches AMAX the resulting test-particle distributions a r e  used to calcu- 

FORTRAN SYMBOLS 

A test-particle number 

AM AMAX - IBAD 

AMAX size of test-particle sample 

BMAX impact parameter ratio 

BRAT10 mir ror  ratio 

CK cos(X) 

CRELi cos e cos 8b + sin e sin Ob cos(axi) 
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cx c 04x2)  

CXK CX*CK 

DELTAV(J, K) (AV)(J, K) 

DELTAX(J, K) G(J, K) 

DELTHA 

DELVHH 

DELVHI 

DELVSQ 

DELXHI 

DENOMl 

DVNSQ 

DVsQAV 

DXSQAV 

EOPT 

FDV 

FDVi 

FDVSi 

FDXi 

FDXSi 

FFVi 

FMIXi 

FNDi 

FNUi 

FPSIi 

G? 
DELVHI*TR 

increment of V between successive J indices 

W2 
increment of B between successive K indices 

KTJK(J, K)GND(J, K) 
J, K 

SUMNA c 
67 
d Z  

N= 1 
~2~ - V I N J ~ )  

1.21/(SIB*EXP(Z*Z)) 

Ti/Ui when i = 1,2 ,3 ,4  

TT22/Ui 

V* SRE Li/Ui 

l.O/FNUi - Y*SRELi**2/U2 

FNUi* FDVi* FDVSi 

V*SRE Li* FDVi 

SQRT(1.0i-Y-2. O*V*SK*COS(mi)) 

SQRT (W+Y-2.0*V2*V* (CRELi)) 

(Ti+V*C X* SRE Li/Sx)/FNUi 

FRICH(M, L) 2.25*S*NUMS/(W*NUMl) 

FTERM(M, L) -6.75*S*NUMG/NUMl 
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FTHEi 

F (THETA) 

FV 

F(V) 

GDV 

GDVS 

GDX 

GDXS 

GFV 

GMIX 

GND 

GNU 

GPSI 

GTHE 

IBAD 

IX 

IY 

V*SRE Li* (V2 -2.O*C RE Li - 3.0*V2 *Y (SRE Li/FNUi)**a)/Ui 

KMARGX(K) print out 

ERF(Z) -R 

KMARGV(J) print out 

wiFDVi(xi) 
i 

wi FDVSi(xi) 
i 

c w  FDXi(xi) 
i 

wi FDXSi( xi) 
i 

c w  FFVi( xi) 
i 

xwiFMIXi(xi) 
i 

c w  FNDi(xi) 
i 

c w i  FNUi(xi) 
i 

c w  FPSIi( xi) 
i 

c W i  FTHE i (xi) 
i 

number of walks discarded due to N reaching value 5000 

number of steps in positive 0 direction 

number of steps in positive V direction 
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KMARGV( J) 

KMARGX(K) 

KTJK(J, K) 

KTOT 

LJ(J) 

LL 

MMAX 

N 

NA 

NUM1, NUMB, 

QUCOR 

R, RN1, RNR, 

RAND 

RMAX 

RMAXl 

S 

SAND 

number of points in Jth interval of injection distribution 
in V 

xKTJK(J ,  K) used for marginal distribution in V 
K 

KTJK(J, K) used for  marginal distribution in 0 
3 

tally of points in Jth increment of V and Kth increment 
of 0 for field distribution determination 

x KTJK(J,K) 
j ,  k 

number of points in Jth increment of V in loss-cone 
distribution 

step number of iteration process 

number of steps between tally points 

number of groups of MMAX steps 

number of groups of MMAX steps when particle reaches 
loss-cone boundary 

. . . , NUM9 used in weighting functions by KTJK and summing over 
J and K 

collision frequency a t  V2 = 1.0, X2 = 7~/2 

random numbers selected from uniform distribution 

call code for random numbers 

real MMAX 

MMAX when V2 = 1.0 and X2 = rr/2 

RNS 

(EbP/Tb) 
initial call code to set up addresses in random number 

generator 

SIB 
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SK 

SRE Li 

SUMNA 

SX 

SXK 

Ti 

TR 

TTi 

TWOP 

TWOR 

Ui 

V 

v 2  

VHH 

VHI 

VHT 

VINJ 

VSQFVT 

VSQKJT 

VSQLJT 

sin X 

sin e cos Ob - cos e sin ob cos(xxi) 

AMAX c NA 
A= 1 

sin(X2) 

sin(X2) sin(x) 

V2 -V* CRE Li 

1 - ATb/Tb, see  eq. (E2) 

V* SQRT( 1.0 -C RE Li* * 2) 

2Pl 

2p2 
FNUi**3 

magnitude of field-particle velocity 

magnitude of test-particle velocity 

VHI*TR 

initial location on V scale for tallying particles 

initial location on V scale for tallying particles 

injection velocity 

4- arcsin(R2) 

V2 value of point being tallied 

V2 KMARG(J) 

c V 2  KMARGV(J) 
J 

V~KJ(J )  

V2LJ(J) 

Cv2  KJ(J) 
J 
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W 

wi 

X. 
1 

X 

x2 

XHI 

XHT 

XMIN and XMAX 

XOUT 

Y 

Z 

Subscripts: 

J 

K 

L 

M 

i 

weight factors in Gaussian quadrature integration procedure 

abscissa location in Gaussian quadrature integration procedure 

'b 
e 
initial location on 8 scale for tallying particles 

initial location on 8 scale for tallying particles 

loss cone boundaries on 8 

X2 values of a point being tallied 

V2 

1.073 V O d /  

index on V or  V2 

index on X or  X2 

index on V2 

index on X2 

index on Gaussian quadrature t e rms  
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FORTRAN PROGRAM 
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- -  
r 

R-ION * 
i 

EO*/T = 1.5 R M 4 Y  = 1&u,?.F 0 7  R M A X l s  W E  01 AHAX= 500 Y M I N =  Y M A X r  1.0pljbbS 9 

VFI=  0.2000000 XHI= 1.2149463 OELVHI= 0.2000000 OELXHI= 0.0647000 MIRROR RATIO= 1.20C016@ 1 
0 

6 

1-R LL-1  01 
11 

STFP SIZE OVSOAVlHsLl 
L r=1 M =  7 M = 1  Ma4 M=5 H=6 M=7 H= 8 w=9 HrlO n=i  I 
1 0.7536-02 0.721E-02 C.646E-02 0.553E-02 0.459E-02 0.374E-02 0.303E-02 0.245E-02 0.199E-02 0.164E-02 0.136E-02 
2 0.758E-02 0.721E-02 0.646E-02 0.553E-02 0. 4 5 B E - 0 2 O A P t L - ~ ~ ~ - O  2 0 * 199E-07 0 * 1 64E-02 0 1 36E-02 
3 0.758E-02 0 .7 i l lE -02 '  C.646E-CZ 0.55ZE-02 0.458E-02 0.373E-02 0.30ZE-02 0.245E-02 0.199E-02 0.164E-02 0.136E-02 
4 0 .758=-0~ n .721~-02 C.646 E-02 O U - 0 2  0.45E-02 0.373E-02 0.3-E-02 0.19SE-02 0.164E-02 (LllbE . -  02 
5 0.75YE-02 0.722E-02 C.646E-02 0.552E-02 O.458E-02 0.373E-02 0.302E-02 0.245E-02 0.199E-02 0.164E-02 0.137E-02 
6 0.753E-02 0.722t-02 C.b4$E -02 0 3 5 Z E - 0 2  Q ~ k 5 ~ J L L 2 3 E - 0 2  0. 3 Q 2 E 5 l 7 0 . 2 4 1 E - 0 2  0.199E-07 0.164E-02 0,UlE-02 
7 0.75dE-02 0.722E-02 0.646E-02 0.552E-02 0.458E-02 0.373E-02 0.30ZE-02 0.245E-02 0.199E-02 0.164E-02 0.1376-02 
8 0.75HE-02 0.7L2E-02 C.646E-02 0.55LE -07 4 d t 5 6 F - - ~ 3 € ~ 0 2  0.3U.E -02 0 . 2 w  - 30.19SE-02 0.16%-02 0.137E-02 
9 0.75dE-02 0.722E-02 0.646E-02 0.55ZE-02 0.458E-02 0.373E-02 0.302E-02 0.245E-02 0.199E-02 0.164E-02 0.137E-02 

11 0.75dE-02 0.721E-02 0.646E-02 0.552E-02 O.458E-02 0.373E-02 0.302E-,OZ 0.245E-02 0.199E-02 0.164E-02 0,136E-02 

13 0.75YE-02 0.721E-02 0.646E-02 0.553E-02 0.459E-02 0.314E-02 0.303E-02 0.245E-02 0.199E-02 0.164E-02 0.136E-02 

i o  0.75t1~-02 o . ~ ~ I E - o ~  0.64-E-07 n u - 0 2  O . ? O ~ E - O ~  0 .745~-02 o . I ~ ~ F - o ~  0 .164~-07 o . I ~ ~ E - o ~  - 

1 7  0.75r l~-n7 0.771~-07 c . 6 4 6 ~ - 0 7  n.553E-07 n . 4 W - o )  0 .374~-07 n.3n7F-w n.745F-n7 0.199~-07 o . h 4 ~ - 0 7  o . i i 6 ~ - 0 2  

FTFP q I 7 F  Dxs0IVIw.I I 
L r = 1  M=2 M=3 n-4  H=5 H=6 n=7 H= 8 P 19 M = l C  M.11 
I ~ . ~ & O E - O I  n.745E-01 r.17Rc-ci n.gi4+-o7 n . 6 4 ~ ~ - 0 ?  O.~~E=QL.B,~~,X=QZ O.~WF-QZ O ~ E - O ~  O ~ F - O ~  0 .159~-02 
z n . 7 6 9 ~ - 0 1  o . z 4 5 ~ - o i  0.1386-01 O . ~ I ~ E - O Z  n . 6 4 8 ~ - 0 ~  0 .481~-02 0 .368~-n2 O . ~ ~ O E - O Z  0 .233~-02 O . I ~ ~ E - O Z  O . ~ ~ Y E - O Z  
3 0.750F-01 0.245F-01 0.178E-C1 0.917F-07 0.0 +LE-07 Q.4 R Q E = Q Z - B ~ ~ L E ~ W _ ~ L L - O ~  0.771F-07 0.191F-07 U F - 0 7  
4 0.75YE-01 0.244E-01 C.138E-C1 0.912E-02 0.647E-02 0.480E-02 0.368E-02 0.290E-02 0.233E-02 0.191E-02 0.159E-02 

h 0.75YE-01 0.244E-01 0.138E-01 O.Yl2E-02 0.647E-02 0.480E-07 0.368E-02 0.290E-02 0 . 2 3 3 6 0 2  0.191E-02 0.159E-02 

8 0.753E-01 0.244E-01 C.138E-01 0.91ZE-07 0.647E-02 0.480E-02 0.368E-02 0.290E-02 0.233E-02 0.191E-02 0.159E-02 
9 0.75JE-01 9.24 4 ~ - o i  c . 1 3 8 ~ - 0 1  0. 912E-02 0.647E-02 0.480E-02 0.36&E-02 0.790E-02 0 . 2 3 1 6 0 2  0.191E-02 0.159E-07 

10 0.75JE-01 0.244E-01 C.1386-01 0.912E-02 0.647E-02 0.480E-02 0.368E-02 0.290E-02 0.233E-02 0.191E-02 0.159E-02 

12 0.760E-01 9.245E-01 C.178E-01 0.913E-02 0.648E-02 0.481E-02 0.368E-02 0.290E-02 0.233E-02 0.191E-02 0.159E-02 
13 0.70 tx-ni 0.745E-01 0.178~ -01 0.914+-07 0.64HF-02 0.4RlE-07 0.369F-07 0.290E-07 0.713€-02 0.191F-02 0.159E-02 

5 o . ~ ' ~ ~ F - o I  o . ~ ~ ~ E - o I  c.1 m ~ - n i  O . Y I ~ F - O ~  a .647~-07 n.48nE-03 o w - 0 7  0 . 7 9 0 ~ - 0 2  O . ~ ~ ~ E - O Z  0. 1 9 1 ~ - 0 7  ~&i9~-07 

7 O . ~ W F - ~ I  0 . 7 4 4 ~ ~ 0 1  c.1 WIF-CI 0.91 1 ~ - 0 7  0 . 6 4 7 ~ - 0 7  a.4eof-n7 o w - 0 7  0 ~ 1 7 % a ~ - 0 7  O . ~ ~ ~ E - O Z  O . I ~ I F - O ~  O . U ~ F - O ~  

1 1  0 . 7 5 1 ~  I -  n i  o . z ~ ~ E - o ~  C - I ~ B F - C I  o . ~ I ~ F - o ?  o . ~ ~ ~ E - o z  O - ~ B O E - O ~  O . M R E - O ~  O . ~ ~ O E - O Z  0 . 7 3 ? ~ - 0 7  O . I S ~ E - O ?  o a w - 0 2  

PROBABILITY TW0PlM.L) 
1 u = l  M= 7 M=3 M=4 H=5 H=h n=7 w= R n=9 M = i r  14-11 
1 0.538E 00 n.511E 00 C.5C5E 00 0.503E 00 0.501E 00 0.500E 00 0.500E 00 0.499E 00 0.49SE 00 0.499E 00 0.499E 00 
7 n.5aeF on 0 . 5 1 1 ~  on c . 5 0 5 ~  on 0.5n.i~ 00 0-F 00 n . 5 n i ~  00 0 . 5 0 0 ~  00 n.499F on 0 . 4 9 9 ~  no n . 4 9 9 ~  on 0 . 4 9 9 ~  00 
3 0.53eE 00 0.511E 00 C.505E 00 0.503E 00 0.501E 00 0.501E O f i  0.500E 00 0.499E 00 0.499E 00 0.49SE 00 0.499E 00 
4 0 . 5 3 7 ~  no 0 . 5 1 1 ~  oo c . 5 ~ 5 ~  ao a . 5 m  oo n.5oiF 00 0.501~ QC 0 . 5 0 0 ~  no 0 . 4 9 ~  on 0 . 4 9 s ~  no n . 4 9 9 ~  nn n . 4 ~ ~  no 
s 0 . 5 3 1 ~  00 0 . 5 1 1 ~  00 r.5c5c no 0 . 5 0 3 ~  on 0 . 5 0 1 ~  00 0 . 5 0 1 ~  00 0 . 5 0 0 ~  no 0 . 4 9 9 ~  00 0 . 4 9 9 ~  00 0 . 4 9 9 ~  00 0 . 4 9 9 ~  00 
6 0.537E 00 0.511E 00 0.505E 00 0.503E 00 0.5UlF 00 0.501E 00 0.5006 00 0.499E 00 0.499F 00 0.499F 00 0.499f 00 

=' 7 0.517E 00 O . S I 1 E  00 C.5C5E C O  0.503E 00 0.5UlE 00 0.501E 00 0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00 
I I  8 0 . 5 1 7 ~  no 0 . 5 1 1 ~  00 c . 5 ~ ; ~  0 0  0 . 5 0 7 ~  00 O.,oiE 00 0 . 5 0 1 ~  00 0 . 5 0 0 ~  00 0 . 4 9 9 ~  00 0 . 4 9 9 ~  nn 0 . 4 9 9 ~  no 0 . 4 9 4 ~  00 
01 9 0.531F O(! 0.511E 00 C.5C5E 00 0.503E 00 O . S O 1 E  00 O.50lE 00 0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00 

8 1 1  0 . 5 3 I F  0 0  0.511E 00 C.5C5E C O  0.503E 00 0.501E 00 0.501E 00 0.500E 00 0.499E 00 0.499E 00 0.499E 00 0.499E 00 
L 1 7  o.57pF nn 0 . 5 1 1 ~  on C . S C S F  c n  0 . 5 0 7 ~  nn O . ~ O I F  no n . 5 n i ~  oi) 0 . 5 0 0 ~  on 0 . 4 9 9 ~  00 0 . 4 9 9 ~  00 0 . 4 9 9 ~  on n.499~ DO 
9 13 0.53dE 0 0  0.511E 00 C.505E 00 0.503E 0 0  O . > U l E  00 0.500E 00 0.500E 00 0.499E 00 0.49SE 00 0.499E 00 Os499E 00 

6 i n  0 . 5 3 7 ~  no s . u  00 c . 5 ~ 5 ~  oc 0 . 5 0 3 ~  00 O - Z ~ I F  on n .501~  00 0.500~ M 0 . 4 9 9 ~  0 0  0 . 4 9 9 ~  on 0 . 4 9 ~  00 0 . 4 9 9 ~  no 

5 

* 

. .  . aa 
VI 



~ 

FREQUENCY MMAXlMvLl - I P = l  M= 7 - M E 4  *-4 5 -- u= 7 H- 0 P-s u - i r  Y = l l  

1 2 2  2 3  25 27 30 3 3  37 4 1  45 49 5 4  

3 22 23 25 27  30 33  37 4 1  45 50  54 
L 9 ?  7 L  7'. 9 1  -. qn I1 37 --41 1.c. 5n '.A 

5 22 23  25 2 7  30 33 37 4 1  45 50  5 4  
-77 > 2  7 5  -.-77. -41-- 1.9 en s1. 

7 22 23  2 5  27  30 33 37 4 1  45 5 0  54  
i; 7 7  7 2  7 5  ? ?  2n  2 %  27 l.1 1s c.n e1. 

-2 2 2  2 5  - d l . - L 3 3 -  -.-17 - 4 1  1.6 s n  * L  

11 22 23  2 5  2 1  30 33  37  41 45 50  54 

13 22 23 25 27  30 33  37 4 1  45 4 9  54  

: q  22 23 25 2 7  30 33 37  4 1  45 5 0  5 4  

1 7  > 7  2 3  75 77 - I n _ . A L  --A be sn sl. 

/LL.m-- 
J = l  J=2 J.3 J=4 J=5 J=6 J=7 J=8 J = 9  J=10 J = 1 1  

K.IIII 7 7  9 7  9 1  A 5  hl3 46 In& 1'. 7 I 

TOTAL TALLY OF NUMBER OF POIYTS I N  F lCH INTERVAL 
K 1 - 1  1-7 l=7 1-4 ,-< I-& 1-7 1 - R  n 1-11 F I T - I I  

27 1247 1 17 6 1  143 184 224 1 9 1  265 118 7 0 
7 4 1 1 1  7 R R  6 7 3  5 7 5  $61 7n7 7 71. 9 7  I i r s  a i n r  

3 25 200 434 745 889 9 8 9  782 428 76 104 255 4 9 2 1  
4 2R 7 5 1  491. 1 n55 1 1  7 5  i4n4 777 1.21 1 Z l  771) L F L  A L z a  

5 E8 269 651) 1204 1215 1900 1462 486 182  323 569 8368 
1. '57 297 R 7 R  1419 15.hl 7377 170h ~ n 7  7 Rn 2 A s  Lcs innss 
7 127 365 1041 1447 1960 2352 1859 1249 4 5 3  650 230 11173 
R '56 2 1 6  R77 1 5 9 1  I R57 1759 I i n n  1 ins  5 6 R  AQ a 111 K # X Q  

9 9 1  324 635 1234 1505 1532 1044 7 0 4  6 3 9  328 102 8190 
i n  7-4 271. 4 4 7  9 1  I 1 I A7 11.1 h h RA 57s c. Ql ?a> 136 Il.l.9 

11 2 1  168 313 667 866 1224 610 427 299 299 59 4993 
I 1  1 7  50 I 1 5  31.7 2 R R  5.9'. R=.n 1.R9 >Ah I ca m n  a i n i  

13 12 6 8  133 177 252 387 275 104 99 112 65 1604 

LI 

01 

6 a 1 9 R I  91.71 

L 

9 

E l V l  h.62 > ? i ~  65x7 1 1 x 7 7  1 3 7 ~ 1  iw i > n 9 e  ,.si9 2 s c 7  
VVFIV) 6.4 250.1 1634.2 5574.7 11146.4 20572.4 20322.2 15552.0 10395.3 12223.5 11719.1 109,456.5 

c r r i d i  D Q J N T Z  r n i i  r$n  = nnhsn . 
c 

CCLLISION FREOUENCY PARAMETER= 0.1454641E-12 

TALLY OF POINTS I N  L O S S T I O N  * 
J = l  J=2 J=3 J=4 J=5 J=6 J=7 Js8 J=9 J110 J-11 I 

L J I J I  178 1 2 1  77 69  43 33 13 9 4 1 1 
L 

e 
SUM NA- 7.6188000E 0 4  AP= 4.9899999E 0 2  



APPENDIX F 

ANALYTICAL SOLUTION FOR CASE OF SHORT WALKS 

Consider the walks so  short that the Fokker-Planck coefficients are constant over 
the distance traveled. Assume that the walk terminates when a particle first reaches 
a prescribed 8 distance from its initial location. Effects of V a r e  thus of second 
order and can be neglected. 
and (5) in combination with a source term as in equation (6) reduce to 

For a spherical field distribution, both equations (4) 

1 ((AO) ) - s i n e -  = - S  sin 0 
2 ae a ( 3 

If the initial test-particle location is at 8 w a/2, then sin 0 M 1 and h = ho6[ 8 - (7r/2)] 
reducing equation (Fl) to 

This model may simulate the end loss problem for mirror  ratios very close to  1.0. 
o. The boundary conditions Injection would be normal to the B field at a constant ra te  

a r e  

f(ec) = f (T  - ec) = 0 (F3) 

Using (Fl) in (F2) and integrating both sides of the equation gives 

2i0 .(e -;) 
= -  

e=e, ( ae ae 

where H is the Heaviside unit function. Integrating a second time and using equation 
(F3) yields 
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f (e> - at/ ( e  - ec)  = o 
ae e=ec 

Using equation (F5) in (F4) gives 

Loss rate  must equal injection rate for steady state so 

The number density, distribution function relation must be 
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I 

Using equation (F6) gives 

nb((fW2) 
n =  

2(1 - sin ec) 

B For small - - 
2 

sin e c = i -  

2 (; - ec) 

2 

to second order so  that the loss ra te  becomes 

2 Evaluating ( (Ad)  ) for a spherical Maxwellian field distribution (eq. ( l l c ) )  and sub- 
stituting into equation (F9) yields for v = vo 

If the particles a re ,  for example, injected at 10 times the average field energy then 

1 2 - 3 0  
2 2 
- mV0 - - kTb 

o r  

Eb -= 15 
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II I 1  II I 

and for deuterons, for example, 

2 
.Ti/'(: - 0,) 19 

n = 0.773~10- 

This result is used in figure 6. 
It is interesting to compare equation (F9) with .equation (33) of reference 8. The 

result of reference 8, derived strictly from a random walk, is for only one absorbing 
wall. The loss rate predicted by equation (F9) (for two absorbing walls) is just twice 
that of reference 7. 

tions (F7) and (F8) into (F6). This yields 
To determine the marginal distribution in 0 for use on figure 7(a) substitute equa- 

2 (; - Qc) 
nb 
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APPENDIX G 

SELECTION OF RANDOM NUMBERS FROM THE NONUNIFORM 

INJECTION DISTRIBUTION OF REFERENCE 5 

The simulation procedure of sampling from a nonuniform distribution when the com- 
puter library contains only a uniformly distributed set of random numbers is quite com- 
mon (refs. 9, 21, and pp. 252-264 of ref. 15). The relation between a uniformly dis- 
tributed random number R and an arbitrarily distributed random number v is 

R = j ”  d r  = dv f(v)dv 
0 

where it is necessary only that the second integral be a monotone increasing function of 
.t/. This says that the cumulative distribution function R of the probability density f(v) 
is uniformly distributed in Y. If f(v) is integrable, R(V) can be found. But to  find 
Y(R) explicitly in the case of interest herein required a root finding method such as, for 
example, the Newton-Raphson method (ref. 22). 

The injection distribution of reference 5 is 

2 
e-mv ’2kTb v 2 dv 

- -~ 6 R(V) = - - 

2 
((Ae)2)e-mv /2kTb v 2 dv s 0 

where ( (AO)2) is given by equation (11c). Letting x = d-b v results in a new 
expression for R(.Y): 
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This w a s  integrated by the method of Gaussian quadratures. The curve fit 

R(Y) = erf 1.073 - ( G$ 
is a good approximation to  the result. This is shown on figure 12 where V = Y/v0 is 

0 R(V) = erf  (1.315 V) 
Equation (G1) 

-- v = arc sin ( ~ 2 )  

I 
0 . 2  . 4  . 6  .8 1.0 1.2 1.4 1.6 

Velocity ratio, V 

Figure 12. - Random number distr ibut ion to f i t  in ject ion distr ibut ion of 
reference 5. 
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used as the abscissa and 
erence velocity vo equal to the mean field velocity. 

d m i  vo = 4- w a s  set equal to' I@ to  make ref- 

For an initial approximation V(R) for use in the Newton-Raphson method, the curve 

2 V = arcsin R 

w a s  used. 

factory in figure 8(c) .  
Results of this procedure to  generate the injection distribution is shown to be satis- 
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